
A Modern CISO’s Guide to API Security

Authors: Jonathan Care, Lionfish Tech Advisors

As a CISO, your role isn’t to dig into the code and fix issues
yourself, as much as you might want to. Your role is to set
policy. The implementation of that policy comes down to
making the right training available, ensure management
support from the executive team, and instill a sense of
personal security responsibility in each employee. Given than
majority of traffic and revenue now goes through APIs, it
also means ensuring that your organization has the right API
security tools in place that can assist in assessing API risks,
provide remediation and protect your APIs from attack.

API Security is a confusing market with several point
approaches and solutions. In this Modern CISO Guide to
API Security, we are going to describe the risk of APIs, API
security best practices, and the requirements needed in an
API Protection solution that can protect organizations large
and small from persistent API threats. We hope you find this
guide useful in your API Protection journey.

What’s an API?

API stands for application programming interface. In less
fancy terms, it’s a gateway that allows two pieces of software
to interact in some meaningful and standardized way.

For example, if you run a music service that can suggest hot
new releases to users, you might want to allow third party
services to poll your ‘recently added’ section with a list of
user preferences and parameters. The gateway that handles
that data exchange is an API.

Companies use APIs on a daily basis for all manner of
things ranging from software updates, to news aggregation,
to triggering certain automated responses via a REST
(Representational State Transfer) API.

Are APIs Natively Insecure?

That depends on how they are implemented. With the right
safeguards and underlying protocols, APIs can be secure and
incredibly useful. With a lax implementation, or built on the
wrong foundation or premise, an API is literally an open door
to your data.

1Lionfish Tech Advisors, Inc.

This is why all of the policies that you lay out will encourage
API best practices that conform with core cybersecurity best
practices.

What are the Main Risks With Poorly
Protected APIs?

The most common API risk for organizations are shadow
APIs. Shadow APIs are unmanaged APIs that are unknown
to the security team. They are often quickly implemented by
internal development teams in a cloud provider such as AWS
without every informing the security team of their existence.
Often there is no API protection that is enabled, allowing
an attacker to easily exploit an application and exfiltrate
sensitive data.

The second most common risk with unprotected APIs is
overexposure of sensitive data. In other words, the API
is giving too much access, too much information, or it’s
exposing hints that can be used to attack the API host or
underlying architecture. In the same way that you wouldn’t
give a guest unfettered access to one of your databases, you
can’t allow APIs to give out everything that some anonymous
user asks for.

The next most common API risk is improper authentication
or authorization. This might manifest at the object level,
giving the API itself too much authority. For example, in a
broken object level authorization (BOLA) attack, a user is
able to access the resources of another user on the system
since authentication and authorization has not been properly
implemented within the API application. You might be
surprised but this is one of the most common attack vectors
seen in API applications.

Another risk is that the API is vulnerable in the face of
DDOS attacks. APIs without any type of protection can
be pressured into processing false requests that squeeze
out legitimate requests made by users, affecting the API
application’s overall performance. APIs require proper rate
limiting and DDoS mitigation. The adoption of an DDoS
mitigation provider can provide around the clock protection
that ensures that your applications and business are never
disrupted.

https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://en.wikipedia.org/wiki/Denial-of-service_attack

2Lionfish Tech Advisors, Inc.

Mass assignment1 can be a problem if the software
development framework supports this feature. These
software frameworks leave options on without requiring the
developer to identify the specific data to be used in HTTP
request parameters in program code variables or objects.
Attackers can in turn use this methodology to create new
parameters that create or overwrite new variables or objects
in the application that was never intended. Leaving mass
assignment options turned on without identifying the specific
data to be processed can open the API up to new attack
vectors.

Other risks include improper logging and monitoring,
insufficient automated testing, bad asset management, and
overly verbose error messages. While these apply to more than
just APIs, they need to be kept in mind.

Best API Security Practices

These are some of the standards, development practices
and policies that you must insist upon whenever an API is
implemented:

•	 Use well tested authentication and authorization
standards. Hundreds of thousands of hours have been
poured into the likes of OAuth 2 and OpenID Connect.
Don’t reinvent the wheel when it comes to authentication
and authorization standards. Use an open standard
that is widely understood and trusted. Trusting your
application development team to develop their own
authentication and authorization schemes will result in an
explosion of vulnerabilities ready to be exploited. There
are countless stories of companies that created in-house
authentication standards, only to have the one person who
fully understood the system quit or retire suddenly. Don’t
become the next cautionary tale.

•	 Encryption first. Transport Layer Security (TLS) was
created in order to improve the security of transmitted
data. If you aren’t using it to protect communications with
your API, this is likely to be seen as a design pitfall and
should be reviewed. It is a widely accepted best practice
to use TLS to encrypt communications in transit and use
proper encryption between the API and data stored in
the backend. The use of unencrypted data stored in the
backend should be carefully reviewed. A common attack
vector is to capture data stored in temporary files, in
particular sensitive transaction data such as authentication
credentials, payment card data or other sensitive
information.

•	 Use a proven IAM solution. As many cloud architectures
are based on identity-first security principles, the use of
a full-fledged identity access management (IAM) fabric is
recommended. Many IAM providers will support your API

1 From OWASP: “Software frameworks sometime allow developers to automatically bind HTTP request parameters into program code variables or
objects to make using that framework easier on developers. This can sometimes cause harm. Attackers can sometimes use this methodology to create new
parameters that the developer never intended which in turn creates or overwrites new variable or objects in program code that was not intended. This is
called a Mass Assignment vulnerability.

security and authentication needs and support multiple
authentication techniques. It’s critical to ensure that all
API endpoints within an API application are authorized
by an IAM service, minimizing the risk of a rogue API with
no authentication that can act as a doorway into your
application for an attacker. Ensure that your development
teams settle on one IAM provider so that all API
applications are authenticated and authorized in the same
way.

•	 Scan and validate all input. Injection attacks are a
permanent threat. Even the simplest API can be leveraged
in an adversarial attack. All input vectors need to be
sanitized to ensure that they do not include malicious
input. A well-recognized best practice is to use an existing
and well tested library for the kind of validation needed.
You should implement XML schema validation, JSON
validation, and SQL validation wherever it is relevant.
Attackers will naturally gravitate towards API application
interfaces that lack appropriate input validation, which can
be easily surfaced through the use of automated scanning
tools.

•	 Keep API error messages short. Error messages should
follow standard security policy, which means they
should be short and factually correct, but not give any
ammunition to a potential hacker. For example, a user
providing the wrong password should get a generic login
error, not an ‘incorrect password’ error: the latter allows
them to fish for valid account names. Keeping your error
messages succinct, ensures that extra information doesn’t
unnecessarily seep out that can give an attacker the extra
edge to move deeper into your application.

•	 Protect your API keys. API keys should never be
directly embedded in the code. That’s a recipe for
disaster. Similarly, they shouldn’t be hard coded into the
application’s source repository. Instead, use environment
variables or files that lie outside of the application’s source
code. Alternatively, use a secrets management service.

•	 Create a central API inventory. APIs shouldn’t just
pop up overnight, unannounced. Every API that your
company runs or is even partially responsible for needs
to be registered in an API database. An API attack
surface management tool should be used to discover your
entire API attack surface that includes both managed
and unmanaged(shadow) APIs. This information should
be populated in your API inventory database. Each API
should be assessed for risk and vulnerability analysis to
understand your organization’s overall security posture.
Additional information such hosting providers and
the department and asset owners of the responsible
APIs should be included. This API inventory should be
continuously updated in real time with all changes made to
ensure that all information is available and relevant.

https://developers.google.com/identity/openid-connect/openid-connect
https://developer.mozilla.org/en-US/docs/Glossary/TLS

3Lionfish Tech Advisors, Inc.

•	 Test early, test often. As much as manual session-based
testing can be useful and wonderful, API security requires
automated testing. Every time the service comes online, every
time the server is rebooted, every time a load balancer spins
up another instance, and every time there’s a patch or code
change, the APIs need to be fully tested. Create your tests
in JMeter, Postman, REST Assured, or the automation suite
of your choice. Then add it to your Jenkins task list and put
it on a periodic timer. If the automated test fails, you do not
deploy. A failed API test should be considered a significant
finding that is likely to expose the system to unauthorized
access, unless further investigation proves otherwise.

•	 Patch your software, firmware, and infrastructure. This
should go without saying, but in case it isn’t obvious, the
platform that your API runs on needs to be kept up to date at
all times. Regularly check for updates to the libraries, suites,
and dependencies that the server relies upon. The same
goes for the underlying operating system and firmware, as
well as the network tools and applications that keep you
safe. Remember to run the aforementioned automated tests
after any updates.

•	 AI or ML monitoring techniques for APIs. While AI or
ML techniques may seem to be in the realm of advanced
computer science, these are tools that are in common
deployment in leading vendor solutions and mature end user
security operations teams. API-specific artificial intelligence,
such as CQAI, can be implemented that will pull in data from
a broader dataset than just your application in order to make
more intelligent decisions on malicious traffic. By leveraging
normal operational data and attack vector data from
hundreds of third-party sources, your API protection can
react to even the most subtle threats immediately. Hundreds
of eyes all around the world are better than relying on a
single perspective.

•	 Check OWASP for new or emerging threats to API
security. OWASP is devoting far more focus to API
security threats and is continuously revising its threat
ranking process to reflect that. The OWASP API Top 10
provides a structured way to understand the most critical
API vulnerabilities that are facing organizations around
the world. This ranking is periodically updated by security
experts as they identify the most critical vulnerabilities
within API applications that could be exploited by attackers.

•	 Set sane rate limits. To safeguard against DDOS attacks as
well as systematic database replication, use a rate limiter.
This limiter will pay attention to request frequency as well
as setting CPU and memory thresholds within the API
itself. If any of these limits are broken, the API’s usage will
be throttled accordingly. Use caching, sideloading, and
load balancing as needed to stay up to date with your API’s
popularity. Just don’t mistake a systematic scraping of your
entire database as ‘popularity’. Have the appropriate checks
in place.

•	 Add critical APIs to your disaster recovery and business
continuity plans. Associated with the central API registry,
identify the APIs that you, and your customers or clients,
cannot live without. Anything mission critical needs to be
added to your DR/BC planning as priority one for regional
mirroring, backup and recovery, and so on. Ensure there is a
process in place to ensure that if an API host does go down,
that the host will be reinitiated and start to services API
requests.

•	 Provide API security training and leverage online
webinars. Make sure that API security courses and webinars
qualify as continuous training for your coders, testers,
and dev-ops personnel. As long as a certain percentage of
them are willing to become experts in API security, that
knowledge will filter through at the product level. Check out
Cequence’s webinar series for some excellent examples.

API Security Solution
Requirements to Protect
Your APIs

API Discovery and Runtime Inventory

CISOs must understand the importance of implementing
automated methods to identify the APIs their organizations
utilize, monitor sensitive data movement, and detect changes
within the ecosystem. Oftentimes, a company’s API footprint
may extend beyond what its developers are aware of, making
visibility and discovery tools essential. IT security teams can
only protect what they can see.

Unmanaged APIs, also known as shadow APIs, may be present
within a company’s application ecosystem, and they need to
be detected alongside known APIs to ensure that OpenAPI
specifications are enforced. API visibility tools should be
vendor-neutral and capable of integrating with all existing
infrastructure components, including API gateways, proxies,
and controllers.

Threat Detection and Mitigation

API threat mitigation is a critical component that ensures
that there is always protection enabled that can block API
threats in real-time. Threat mitigation always starts with
accurate threat detection. An API security tool should be
able to understand the business logic of an application and
the relevant security use cases. This ensures that any threat
detection is not a one-size fits all approach that can lead to
very high false positive rates, missing critical API attacks that
actually matter.

https://www.cequence.ai/products/cqai/
https://www.cequence.ai/resources/?resource_type=webinars

4Lionfish Tech Advisors, Inc. Lionfish-ModernCISOsGuidetoAPISecurity-WP-07102023

What follows is threat mitigation, which is the ability to block
API threats in real-time as they are discovered. This is a must
have capability for organizations with mission-critical API
applications to ensure they can block threats before they
disrupt the business. A mature API security solution should
have a flexible response options for malicious API traffic,
that include blocking, logging, deceiving, or rate-limiting
an attackers’ access. Threat mitigation tools should be
customizable to allow companies to defend against threats
without obstructing legitimate traffic.

Design and Architecture

API security solutions should be designed based on an
organization’s specific needs. Considering the diverse
range of applications for API-based development, this
could mean deploying a cloud-based software-as-a-service
or implementing an on-premises solution in a data center.
Hybrid deployments, featuring on-premises data collection
for security and compliance and a cloud-based control plane,
also play a significant role.

API security tools should analyze only the necessary
sensitive data to fulfill their purpose. Ensuring compliance
with regulations such as the General Data Protection
Regulation is vital to avoid privacy liabilities.

Network Integrations

An all-encompassing API security deployment should
integrate with various network infrastructures to provide
visibility into all types of API traffic, both inline and out
of band. Integration with content delivery networks or
load balancers allows organizations to analyze additional
information.

Both internal and external APIs should be included in API
security efforts, as either could expose an attack surface that
compromises sensitive data. Integrations with gateways,
proxies, load balancers, controllers, and more can help
achieve this level of coverage.

Ecosystem Integration

Incorporating API development workflows into API security
solutions helps minimize the risk of introducing new
vulnerabilities into production. The API security checklist
concludes with integrating DevOps workflows and existing
security tools.

With these integrations, developers can make API security
visibility and risk mitigation an integral part of their
continuous integration and deployment workflows. The
highly automated and efficient features promote more
secure application development without hindering progress.

Conclusion

Our reliance on APIs is only going to grow in the near future.
APIs are powering today’s mission-critical applications
across the largest and most complex businesses. As a result,
attackers are recalibrating their attack campaigns to target
API applications. CISOs, especially those working in finance
and retail industries must remain vigilant in ensuring that
their customer’s sensitive data is protected at all times,
especially when it is protected by regulation. Applications
are now routinely cloud-native, with developer teams
building complex architectures through the interlinking of
APIs to generate increased value. This complexity can breed
opportunities for an attacker to exploit applications and
sensitive data.

As a result, it’s important to ensure that the security for
these APIs is airtight. This means that security standards
need to be kept high and security best practices should
never be compromised and always followed. This should be
reinforced with an API protection tool that can discover your
APIs, surface risks, and provide real-time protection against
all persistent threats across organizations large and small,
ensuring there is no disruption to your business or to your
customers.

